3.1075 \(\int \frac{x^{5/2}}{(a+b x^2+c x^4)^2} \, dx\)

Optimal. Leaf size=450 \[ -\frac{x^{3/2} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\sqrt [4]{c} \left (\sqrt{b^2-4 a c}+4 b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (4 b-\sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (\sqrt{b^2-4 a c}+4 b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \left (4 b-\sqrt{b^2-4 a c}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{\sqrt{b^2-4 a c}-b}} \]

[Out]

-(x^(3/2)*(b + 2*c*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - (c^(1/4)*(4*b + Sqrt[b^2 - 4*a*c])*ArcTan[(2^
(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b - Sqrt[b^2 - 4*a*c]
)^(1/4)) + (c^(1/4)*(4*b - Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]
)/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(4*b + Sqrt[b^2 - 4*a*c])*ArcTanh[
(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b - Sqrt[b^2 - 4*a
*c])^(1/4)) - (c^(1/4)*(4*b - Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1
/4)])/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.709712, antiderivative size = 450, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1115, 1364, 1510, 298, 205, 208} \[ -\frac{x^{3/2} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\sqrt [4]{c} \left (\sqrt{b^2-4 a c}+4 b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (4 b-\sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (\sqrt{b^2-4 a c}+4 b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \left (4 b-\sqrt{b^2-4 a c}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{\sqrt{b^2-4 a c}-b}} \]

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-(x^(3/2)*(b + 2*c*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - (c^(1/4)*(4*b + Sqrt[b^2 - 4*a*c])*ArcTan[(2^
(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b - Sqrt[b^2 - 4*a*c]
)^(1/4)) + (c^(1/4)*(4*b - Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]
)/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(4*b + Sqrt[b^2 - 4*a*c])*ArcTanh[
(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b - Sqrt[b^2 - 4*a
*c])^(1/4)) - (c^(1/4)*(4*b - Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1
/4)])/(2*2^(3/4)*(b^2 - 4*a*c)^(3/2)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1364

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(n - 1)*(d*x)^(
m - n + 1)*(b + 2*c*x^n)*(a + b*x^n + c*x^(2*n))^(p + 1))/(n*(p + 1)*(b^2 - 4*a*c)), x] - Dist[d^n/(n*(p + 1)*
(b^2 - 4*a*c)), Int[(d*x)^(m - n)*(b*(m - n + 1) + 2*c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p +
 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1] && G
tQ[m, n - 1] && LeQ[m, 2*n - 1]

Rule 1510

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{5/2}}{\left (a+b x^2+c x^4\right )^2} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^6}{\left (a+b x^4+c x^8\right )^2} \, dx,x,\sqrt{x}\right )\\ &=-\frac{x^{3/2} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (3 b-2 c x^4\right )}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )}{2 \left (b^2-4 a c\right )}\\ &=-\frac{x^{3/2} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac{\left (c \left (4 b-\sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{2 \left (b^2-4 a c\right )^{3/2}}-\frac{\left (c \left (4 b+\sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{2 \left (b^2-4 a c\right )^{3/2}}\\ &=-\frac{x^{3/2} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\left (\sqrt{c} \left (4 b-\sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} \left (b^2-4 a c\right )^{3/2}}+\frac{\left (\sqrt{c} \left (4 b-\sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} \left (b^2-4 a c\right )^{3/2}}+\frac{\left (\sqrt{c} \left (4 b+\sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} \left (b^2-4 a c\right )^{3/2}}-\frac{\left (\sqrt{c} \left (4 b+\sqrt{b^2-4 a c}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} \left (b^2-4 a c\right )^{3/2}}\\ &=-\frac{x^{3/2} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac{\sqrt [4]{c} \left (4 b+\sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{c} \left (4 b-\sqrt{b^2-4 a c}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{c} \left (4 b+\sqrt{b^2-4 a c}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [4]{c} \left (4 b-\sqrt{b^2-4 a c}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2\ 2^{3/4} \left (b^2-4 a c\right )^{3/2} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.207011, size = 109, normalized size = 0.24 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{2 \text{$\#$1}^4 c \log \left (\sqrt{x}-\text{$\#$1}\right )-3 b \log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^5 c+\text{$\#$1} b}\& \right ]+\frac{4 x^{3/2} \left (b+2 c x^2\right )}{a+b x^2+c x^4}}{8 \left (b^2-4 a c\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-((4*x^(3/2)*(b + 2*c*x^2))/(a + b*x^2 + c*x^4) + RootSum[a + b*#1^4 + c*#1^8 & , (-3*b*Log[Sqrt[x] - #1] + 2*
c*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/(8*(b^2 - 4*a*c))

________________________________________________________________________________________

Maple [C]  time = 0.27, size = 121, normalized size = 0.3 \begin{align*} 2\,{\frac{1}{c{x}^{4}+b{x}^{2}+a} \left ( 1/2\,{\frac{c{x}^{7/2}}{4\,ac-{b}^{2}}}+1/4\,{\frac{b{x}^{3/2}}{4\,ac-{b}^{2}}} \right ) }+{\frac{1}{32\,ac-8\,{b}^{2}}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{2\,{{\it \_R}}^{6}c-3\,{{\it \_R}}^{2}b}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(c*x^4+b*x^2+a)^2,x)

[Out]

2*(1/2*c/(4*a*c-b^2)*x^(7/2)+1/4*b/(4*a*c-b^2)*x^(3/2))/(c*x^4+b*x^2+a)+1/8/(4*a*c-b^2)*sum((2*_R^6*c-3*_R^2*b
)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{2 \, c x^{\frac{7}{2}} + b x^{\frac{3}{2}}}{2 \,{\left ({\left (b^{2} c - 4 \, a c^{2}\right )} x^{4} + a b^{2} - 4 \, a^{2} c +{\left (b^{3} - 4 \, a b c\right )} x^{2}\right )}} + \int -\frac{2 \, c x^{\frac{5}{2}} - 3 \, b \sqrt{x}}{4 \,{\left ({\left (b^{2} c - 4 \, a c^{2}\right )} x^{4} + a b^{2} - 4 \, a^{2} c +{\left (b^{3} - 4 \, a b c\right )} x^{2}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

-1/2*(2*c*x^(7/2) + b*x^(3/2))/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2) + integrate(-1/
4*(2*c*x^(5/2) - 3*b*sqrt(x))/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2), x)

________________________________________________________________________________________

Fricas [B]  time = 63.1198, size = 24712, normalized size = 54.92 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*(4*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b
^3*c - 240*a^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*
a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^1
4*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7
+ 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840
*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))*arctan(-((81*b^6 - 652*a*b^4*c + 1328*a^2*b^2*c^2 - 64*a^3*c
^3 - 4*(a*b^13 - 24*a^2*b^11*c + 240*a^3*b^9*c^2 - 1280*a^4*b^7*c^3 + 3840*a^5*b^5*c^4 - 6144*a^6*b^3*c^5 + 40
96*a^7*b*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a
^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*
b^2*c^8 - 262144*a^11*c^9)))*sqrt((74733890625*b^16*c^2 + 112193100000*a*b^14*c^3 + 68088600000*a^2*b^12*c^4 +
 20761920000*a^3*b^10*c^5 + 3063744000*a^4*b^8*c^6 + 113909760*a^5*b^6*c^7 - 19021824*a^6*b^4*c^8 - 1179648*a^
7*b^2*c^9 + 65536*a^8*c^10)*x - 1/2*sqrt(1/2)*(2989355625*b^21*c - 23678649000*a*b^19*c^2 + 7135160400*a^2*b^1
7*c^3 + 277460328960*a^3*b^15*c^4 - 338956033536*a^4*b^13*c^5 - 492326940672*a^5*b^11*c^6 - 183476674560*a^6*b
^9*c^7 - 21980119040*a^7*b^7*c^8 + 750059520*a^8*b^5*c^9 + 190316544*a^9*b^3*c^10 - 7340032*a^10*b*c^11 + (369
05625*a*b^28*c - 1159839000*a^2*b^26*c^2 + 15854324400*a^3*b^24*c^3 - 122710429440*a^4*b^22*c^4 + 584418357504
*a^5*b^20*c^5 - 1728949905408*a^6*b^18*c^6 + 2983008514048*a^7*b^16*c^7 - 2317983285248*a^8*b^14*c^8 - 4623484
19072*a^9*b^12*c^9 + 1339972648960*a^10*b^10*c^10 + 254402363392*a^11*b^8*c^11 - 161849802752*a^12*b^6*c^12 -
51220840448*a^13*b^4*c^13 - 2550136832*a^14*b^2*c^14 + 268435456*a^15*c^15)*sqrt((6561*b^4 - 648*a*b^2*c + 16*
a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^
8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))*sqrt(-(81*b^5 + 760
*a*b^3*c - 240*a^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6
144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4
*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*
c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 +
3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6))) + (22143375*b^14*c - 161619300*a*b^12*c^2 + 233100720*a^
2*b^10*c^3 + 224213184*a^3*b^8*c^4 + 48450816*a^4*b^6*c^5 + 185344*a^5*b^4*c^6 - 487424*a^6*b^2*c^7 + 16384*a^
7*c^8 - 4*(273375*a*b^21*c - 6355800*a^2*b^19*c^2 + 60732720*a^3*b^17*c^3 - 301810176*a^4*b^15*c^4 + 798453248
*a^5*b^13*c^5 - 951914496*a^6*b^11*c^6 + 38461440*a^7*b^9*c^7 + 557711360*a^8*b^7*c^8 + 179503104*a^9*b^5*c^9
+ 11010048*a^10*b^3*c^10 - 1048576*a^11*b*c^11)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*
b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 -
 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))*sqrt(x))*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b
^3*c - 240*a^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*
a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^1
4*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7
+ 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840
*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))/(332150625*b^12*c + 321489000*a*b^10*c^2 + 107535600*a^2*b^8
*c^3 + 12061440*a^3*b^6*c^4 - 463104*a^4*b^4*c^5 - 104448*a^5*b^2*c^6 + 4096*a^6*c^7)) - 4*((b^2*c - 4*a*c^2)*
x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (a*b
^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)
*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 +
 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262
144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2
*c^5 + 4096*a^7*c^6)))*arctan(((81*b^6 - 652*a*b^4*c + 1328*a^2*b^2*c^2 - 64*a^3*c^3 + 4*(a*b^13 - 24*a^2*b^11
*c + 240*a^3*b^9*c^2 - 1280*a^4*b^7*c^3 + 3840*a^5*b^5*c^4 - 6144*a^6*b^3*c^5 + 4096*a^7*b*c^6)*sqrt((6561*b^4
 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10
*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))
*sqrt((74733890625*b^16*c^2 + 112193100000*a*b^14*c^3 + 68088600000*a^2*b^12*c^4 + 20761920000*a^3*b^10*c^5 +
3063744000*a^4*b^8*c^6 + 113909760*a^5*b^6*c^7 - 19021824*a^6*b^4*c^8 - 1179648*a^7*b^2*c^9 + 65536*a^8*c^10)*
x - 1/2*sqrt(1/2)*(2989355625*b^21*c - 23678649000*a*b^19*c^2 + 7135160400*a^2*b^17*c^3 + 277460328960*a^3*b^1
5*c^4 - 338956033536*a^4*b^13*c^5 - 492326940672*a^5*b^11*c^6 - 183476674560*a^6*b^9*c^7 - 21980119040*a^7*b^7
*c^8 + 750059520*a^8*b^5*c^9 + 190316544*a^9*b^3*c^10 - 7340032*a^10*b*c^11 - (36905625*a*b^28*c - 1159839000*
a^2*b^26*c^2 + 15854324400*a^3*b^24*c^3 - 122710429440*a^4*b^22*c^4 + 584418357504*a^5*b^20*c^5 - 172894990540
8*a^6*b^18*c^6 + 2983008514048*a^7*b^16*c^7 - 2317983285248*a^8*b^14*c^8 - 462348419072*a^9*b^12*c^9 + 1339972
648960*a^10*b^10*c^10 + 254402363392*a^11*b^8*c^11 - 161849802752*a^12*b^6*c^12 - 51220840448*a^13*b^4*c^13 -
2550136832*a^14*b^2*c^14 + 268435456*a^15*c^15)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*
b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 -
 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (
a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c
^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^
3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 -
262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*
b^2*c^5 + 4096*a^7*c^6)))*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^10*c
 + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 6
48*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4
 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*
b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6
))) + (22143375*b^14*c - 161619300*a*b^12*c^2 + 233100720*a^2*b^10*c^3 + 224213184*a^3*b^8*c^4 + 48450816*a^4*
b^6*c^5 + 185344*a^5*b^4*c^6 - 487424*a^6*b^2*c^7 + 16384*a^7*c^8 + 4*(273375*a*b^21*c - 6355800*a^2*b^19*c^2
+ 60732720*a^3*b^17*c^3 - 301810176*a^4*b^15*c^4 + 798453248*a^5*b^13*c^5 - 951914496*a^6*b^11*c^6 + 38461440*
a^7*b^9*c^7 + 557711360*a^8*b^7*c^8 + 179503104*a^9*b^5*c^9 + 11010048*a^10*b^3*c^10 - 1048576*a^11*b*c^11)*sq
rt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32
256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144
*a^11*c^9)))*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^10*c + 24
0*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*
b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 12
9024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12
- 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6))))/
(332150625*b^12*c + 321489000*a*b^10*c^2 + 107535600*a^2*b^8*c^3 + 12061440*a^3*b^6*c^4 - 463104*a^4*b^4*c^5 -
 104448*a^5*b^2*c^6 + 4096*a^6*c^7)) - ((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sq
rt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6
*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^1
8 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^
8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^
8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))*log(1/2*sqrt(1/2)*(2187*b^15
- 47412*a*b^13*c + 423536*a^2*b^11*c^2 - 1990720*a^3*b^9*c^3 + 5177600*a^4*b^7*c^4 - 7052288*a^5*b^5*c^5 + 398
5408*a^6*b^3*c^6 - 180224*a^7*b*c^7 - (27*a*b^22 - 820*a^2*b^20*c + 10064*a^3*b^18*c^2 - 57024*a^4*b^16*c^3 +
44544*a^5*b^14*c^4 + 1505280*a^6*b^12*c^5 - 10838016*a^7*b^10*c^6 + 38436864*a^8*b^8*c^7 - 79233024*a^9*b^6*c^
8 + 92012544*a^10*b^4*c^9 - 49283072*a^11*b^2*c^10 + 4194304*a^12*c^11)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*
c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^
5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))*sqrt(sqrt(1/2)*sqrt(-(8
1*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*
b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*
c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 5898
24*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4
*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 +
 (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7
*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*
c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8
- 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^
6*b^2*c^5 + 4096*a^7*c^6)) - (273375*b^8*c + 205200*a*b^6*c^2 + 47520*a^2*b^4*c^3 + 2304*a^3*b^2*c^4 - 256*a^4
*c^5)*sqrt(x)) + ((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(81*b^5
+ 760*a*b^3*c - 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^
4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 57
6*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9
*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c
^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))*log(-1/2*sqrt(1/2)*(2187*b^15 - 47412*a*b^13*c + 42
3536*a^2*b^11*c^2 - 1990720*a^3*b^9*c^3 + 5177600*a^4*b^7*c^4 - 7052288*a^5*b^5*c^5 + 3985408*a^6*b^3*c^6 - 18
0224*a^7*b*c^7 - (27*a*b^22 - 820*a^2*b^20*c + 10064*a^3*b^18*c^2 - 57024*a^4*b^16*c^3 + 44544*a^5*b^14*c^4 +
1505280*a^6*b^12*c^5 - 10838016*a^7*b^10*c^6 + 38436864*a^8*b^8*c^7 - 79233024*a^9*b^6*c^8 + 92012544*a^10*b^4
*c^9 - 49283072*a^11*b^2*c^10 + 4194304*a^12*c^11)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a
^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^
6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c -
 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^
2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2
- 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 5898
24*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b
^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 + (a*b^12 - 24*a^2*b^1
0*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4
- 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*
c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/
(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*
c^6)) - (273375*b^8*c + 205200*a*b^6*c^2 + 47520*a^2*b^4*c^3 + 2304*a^3*b^2*c^4 - 256*a^4*c^5)*sqrt(x)) - ((b^
2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a
^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5
+ 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376
*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^1
0*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4
 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))*log(1/2*sqrt(1/2)*(2187*b^15 - 47412*a*b^13*c + 423536*a^2*b^11*c^2 - 19
90720*a^3*b^9*c^3 + 5177600*a^4*b^7*c^4 - 7052288*a^5*b^5*c^5 + 3985408*a^6*b^3*c^6 - 180224*a^7*b*c^7 + (27*a
*b^22 - 820*a^2*b^20*c + 10064*a^3*b^18*c^2 - 57024*a^4*b^16*c^3 + 44544*a^5*b^14*c^4 + 1505280*a^6*b^12*c^5 -
 10838016*a^7*b^10*c^6 + 38436864*a^8*b^8*c^7 - 79233024*a^9*b^6*c^8 + 92012544*a^10*b^4*c^9 - 49283072*a^11*b
^2*c^10 + 4194304*a^12*c^11)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^
14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7
 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 - (a*b^
12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*
sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 +
32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 2621
44*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*
c^5 + 4096*a^7*c^6)))*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2
- 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2
*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c
^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*
c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)) - (273375*b^8*c
+ 205200*a*b^6*c^2 + 47520*a^2*b^4*c^3 + 2304*a^3*b^2*c^4 - 256*a^4*c^5)*sqrt(x)) + ((b^2*c - 4*a*c^2)*x^4 + a
*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 - (a*b^12 - 2
4*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((
6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*
a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^1
1*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 +
4096*a^7*c^6)))*log(-1/2*sqrt(1/2)*(2187*b^15 - 47412*a*b^13*c + 423536*a^2*b^11*c^2 - 1990720*a^3*b^9*c^3 + 5
177600*a^4*b^7*c^4 - 7052288*a^5*b^5*c^5 + 3985408*a^6*b^3*c^6 - 180224*a^7*b*c^7 + (27*a*b^22 - 820*a^2*b^20*
c + 10064*a^3*b^18*c^2 - 57024*a^4*b^16*c^3 + 44544*a^5*b^14*c^4 + 1505280*a^6*b^12*c^5 - 10838016*a^7*b^10*c^
6 + 38436864*a^8*b^8*c^7 - 79233024*a^9*b^6*c^8 + 92012544*a^10*b^4*c^9 - 49283072*a^11*b^2*c^10 + 4194304*a^1
2*c^11)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^1
2*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^
8 - 262144*a^11*c^9)))*sqrt(sqrt(1/2)*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c +
240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*
a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 -
129024*a^7*b^8*c^5 + 344064*a^8*b^6*c^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^1
2 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)))
*sqrt(-(81*b^5 + 760*a*b^3*c - 240*a^2*b*c^2 - (a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 - 1280*a^4*b^6*c^3 +
3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)*sqrt((6561*b^4 - 648*a*b^2*c + 16*a^2*c^2)/(a^2*b^18 - 36*
a^3*b^16*c + 576*a^4*b^14*c^2 - 5376*a^5*b^12*c^3 + 32256*a^6*b^10*c^4 - 129024*a^7*b^8*c^5 + 344064*a^8*b^6*c
^6 - 589824*a^9*b^4*c^7 + 589824*a^10*b^2*c^8 - 262144*a^11*c^9)))/(a*b^12 - 24*a^2*b^10*c + 240*a^3*b^8*c^2 -
 1280*a^4*b^6*c^3 + 3840*a^5*b^4*c^4 - 6144*a^6*b^2*c^5 + 4096*a^7*c^6)) - (273375*b^8*c + 205200*a*b^6*c^2 +
47520*a^2*b^4*c^3 + 2304*a^3*b^2*c^4 - 256*a^4*c^5)*sqrt(x)) + 4*(2*c*x^3 + b*x)*sqrt(x))/((b^2*c - 4*a*c^2)*x
^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

Timed out